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Simulation of Potts models with realq and no critical slowing down

Ferdinando Gliozzi
Dipartimento di Fisica Teorica dell’Universita` di Torino, and INFN, Sezione di Torino, Via P. Giuria 1, I-10125 Torino, Italy

~Received 9 February 2002; published 23 July 2002!

A Monte Carlo algorithm is proposed to simulate the ferromagneticq-state Potts model for any realq.0. A
single update is a random sequence of disordering and deterministic moves, one for each link of the lattice. A
disordering move attributes a random value to the link, regardless of the state of the system, while in a
deterministic move this value is a state function. The relative frequency of these moves depends on the two
parametersq andb51/kT. The algorithm is not affected by critical slowing down and the dynamical critical
exponentz is exactly vanishing. We simulate in this way a three-dimensional Potts model in the range 2,q
,3 for estimating the critical valueqc where the thermal transition changes from second order to first order,
and findqc52.62060.005.
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I. INTRODUCTION

TheQ-state Potts model@1# is perhaps one of the simple
nontrivial models in statistical mechanics. A broad set
techniques has been brought to bear on it in a variety
disciplines and it has been the subject of considerable th
retical attention over the last two decades~for a review, see
@2#!.

This model is theoretically well defined for any real
complex value ofq @3#. In particular, the limitq→11 corre-
sponds to the random percolation problem and the limiq
→01 has a fundamental role in enumerating the spann
trees of a graph@3#. Two-dimensional~2D! conformal field
theory@4# suggests exact formulas for the critical indices a
for other universal quantities as continuous functions ofq in
the range 0,q,4. Another interesting problem involving
nonintegerq in three-dimensional Potts models is the det
mination of the universal valueqc for which the thermal
transition changes from second order to first order. A vari
of techniques have been used@5–9#, which locateqc in the
range 2,qc,3. All these methods require extrapolations
q because the standard simulations work only at integer
ues ofq. Reweighting techniques@10,11# and transfer matrix
methods@12# allow one to estimate some thermodynam
functions@8# in a wider range ofq; however, there is no way
to evaluate correlation functions there.

In this paper we remove this limitation by constructing
Monte Carlo ~MC! algorithm which works for any realq
.0. Although the time required for a sweep through t
system grows faster than its size because at some step o
algorithm nonlocal information is required, the simulatio
are not affected by a critical slowing down and the dynam
cal critical exponentz is exactly zero. We test the reliabilit
of the method by comparison with some exact results for
2D Potts model at criticality. We probe its effectiveness
performing large scale MC simulations of a thre
dimensional Potts model for estimating the universal va
qc .

II. THE ALGORITHM

Starting with the HamiltonianH52(^ i j &ds is j
where the

site variables i takes the valuess i51,2, . . . ,q, with ^ i j &
1063-651X/2002/66~1!/016115~5!/$20.00 66 0161
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ranging over the links of an arbitrary lattice or graphL, one
can write the q-state Potts model partition functionZ
5($s%e

2bH in the Fortuin-Kasteleyn~FK! random cluster
representation@3#

Z5 (
G#L

W~G!5(
b,c

V~b,c!vbqc, ~1!

wherev5eb215p/(12p), the summation is over all span
ning subgraphsG#L, W(G)5vbqc is their weight, ex-
pressed in terms of the numberb of edges ofG, called bonds,
and the numberc of connected components or FK cluster
andV(b,c) is the number of subgraphs withb bonds andc
clusters. This representation now defines a model for any
or complexq.

In principle, one could directly use Eq.~1! to define a
Metropolis algorithm working for positive nonintegerq @13#,
but this is a difficult problem to simulate because, for ea
proposed change of a link, the numberc of FK clusters, a
nonlocal property, must be determined. Large lattices req
a huge amount of CPU time. As a matter of fact, such
method has been applied only to two-dimensional syste
where special topological relations can be used@13#.

Our strategy is different. We start by considering a use
identity that can be derived using the methods describe
Ref. @14#.

Let l be any link ofL. Denote by$Gl
1% the set of span-

ning subgraphs wherel is a bond and by$Gl
2% those in

which this bond is missing. We haveZ5Zl
11Zl

2 , with Zl
6

5(G
l
6W(Gl

6). Introducing a bond variablea l equal to 1

when l is a bond and 0 otherwise yields

^a l&5
Zl

1

Z
. ~2!

The same quantity can be evaluated in a different way
addition of a bond to each graph of typeGl

2 . There are two
kinds of missing bonds. Those joining two different cluste
called potential bridges, are picked out by a variableb l
which takes the value 1 only on them and is zero otherw
their addition lowers the numberc of FK clusters. We have
©2002 The American Physical Society15-1
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b l51⇒W~Gl
2!

v
q

5W~Gl
1!. ~3!

The remaining missing bonds, described by a similar v
able g l , join two sites of the same cluster; their additio
keepsc invariant, and thus

g l51⇒W~Gl
2!v5W~Gl

1!. ~4!

Combining Eqs.~2!, ~3!, and ~4! yields ^a l&5(v/q)^b l&
1v^g l& which is the wanted identity. Since of coursea l
1b l1g l51, we can rewrite it as

^a l&5p^a l&1
p

q
^b l&1p^g l&, ~5!

where the weighting factors can now be interpreted in te
of probabilities. The idea is now to regard this identity as
limit of a recursion relation of the type

p l
(n11)5pa l

(n)1
p

q
b l

(n)1pg l
(n) , ~6!

wherep l
(n11) is the probability of having a bond on the lin

l in the configurationG(n11). It is expressed as a state fun
tion (a l ,b l ,org l) of the same link in theG(n) configuration.
This generates a Markov process•••→G(n)→G(n11)

→••• where the equilibrium distribution yields Eq.~5!. This
stochastic chain fulfills two important conditions:~i! there is
a nonzero probability of going from any configuration to a
configuration in a single sweep throughL, and~ii ! the equi-
librium distribution maps to itself as Eq.~5! is kept invariant
by the process. One can then argue that detailed balan
satisfied.

To see it directly, assume, for instance, that in thenth
configurationl is a potential bridge (b l

(n)51, G(n)5Gl
2)

which is promoted to a bond in the (n11)th configuration
(a l

(n11)51, G(n11)5Gl
1). The transition rate isP(Gl

2

→Gl
1)5p/q. Conversely, Eq.~6! yields P(Gl

1→Gl
2)51

2p. Then, according to Eqs.~1! and ~4!,

P~Gl
2→Gl

1!

P~Gl
1→Gl

2!
5

W~Gl
1!

W~Gl
2!

~7!

as detailed balance requires. The same conclusion ca
reached in all the other cases.

A straightforward, preliminary, implementation of the r
cursion relation~6! is the following.~i! Go over each linkl
PL of the configurationG(n) and generate a pseudorando
numberXl uniformly distributed from 0 to 1.~ii ! Create a
bond onl only in the following two cases:~a! Xl,p and l is
a bond (a l51) or a missing bond joining two sites of th
same FK cluster (g l51); ~b! Xl,p/q and l is a potential
bridge (b l51). This generates uniquely the configurati
G(n11).

Let q.1 for definiteness. It is worth noting that whe
Xl,p/q the algorithm adds a bond tol regardless of which
configurationG(n) we are dealing with. Similarly, whenXl
.p no bond is added. In the remaining cases (p/q<Xl
01611
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s
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<p), the value attributed tol ~bond or no bond! is unambigu-
ously determined byG(n).

Inspecting all the cases leads to the following bet
implementation of the algorithm.

Step 1. Pick a link l PL and generate a pseudorando
number 0<Xl<1.

Step 2. Update the link according to the following
scheme:

Move Current state New state

~a! Xl,
p

q
any bond

~b! Xl.p any no bond

~c!
p

q
<Xl<p H a l51 bond

b l51 no bond

g l51 bond

Step 3. Return to step 1.
The first two moves do not need any information on t

state of the system: they just disorder it. The last one i
purely deterministic move; its only effect is to put a bon
whenever a link joins two sites of the same cluster. It
quires distinguishing between the two kinds of missi
bonds (b l51 or g l51). One can infer this nonlocal prop
erty by identifying the connected components of the confi
ration, as in the Swendsen-Wang~SW! algorithm @15#. This
cluster reconstruction is time demanding; however, it giv
complete information on the state of the missing bonds of
whole lattice. As the update proceeds through the lattice
amount of information is progressively lost because of d
ordering moves@the deterministic moves never change (c)#.
We may partly keep track of the cluster structure by relab
ing the cluster indices whenever a disordering move creat
bond between two of them. Cluster reconstruction is tr
necessary only when a deterministic move touches a mis
bond of a putative single cluster where some bond has b
erased by previous disordering moves.

Because of nonlocality, the number of operations involv
every MC step is proportional toNa, whereN is the number
of links and 1,a<2. The efficiency of the algorithm de
pends crucially on the actual number of cluster reconstr
tions per sweep. In our 3D simulations reported below
fraction of links requiring cluster reconstruction was abo
3% with a decreasing trend for larger lattices.

III. CORRELATION TIMES

An unusual feature of the described algorithm is the pr
ence of randomly distributed disordering moves. The me
number of links subjected to disordering moves in a sin
sweep isNpr with pr511p/q2p. For instance, in the Ising
model (q52) at criticality more than 70% of the links ar
disordered every sweep. It is now easy to find an up
bound for the mean numbert of MC steps needed to gene
ate effectively independent configurations. Aftern sweeps
the mean number of links which have not yet undergon
disordering move isN(12pr)

n. When this number is of the
5-2
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order of 1 all the links have been touched by a disorder
move and the upper boundt0>t is given by the obvious
relation N(12pr)

t0;1, i.e., t052 lnN/ln(12pr). Thus the
dynamical exponentz is 0, as critical slowing down mani
fests itself by the power lawt}Nz at the critical temperature
where a second-order phase transition occurs@16#. A numeri-
cal estimate of the decorrelation time of the dynamics of t
algorithm for the critical Ising model on a square lattice
reported in Table. I. Note that the actual value oft does not
saturate the upper bound and is much smaller than the an
gous quantity of the SW algorithm.

Our algorithm also proves useful in combating anoth
dynamical problem that one deals with in the case of fi
order transitions, namely, the exponentially fast suppres
of the tunneling between metastable states with increa
lattice size.

To reduce this type of slowing down the multicanonic
MC algorithm has been proposed@17#; also the method of
simulated tempering@18# proves useful@19#. In a few nu-
merical tests for two-dimensional models withq57 and 20
>L>100 we found that the tunnelling time of the canonic
algorithm described in the present paper grows with the s
tem sizeV as t t}Va with a51.0360.03, as in an optima
variant@20# of the multicanonical method, but with a small
proportionality factor.

The reason for this performance is that the random mo
accelerate the tunneling between order and disorder.
drawback is that our algorithm is nonlocal, so the CPU ti
grows asVb with b.1; for instance, in the present case w
found b;1.85. Thus this algorithm certainly cannot be re
ommended for integerq, although at a first-order transition
performs much better than any local canonical algorithm

IV. SIMULATIONS

As a first, simple, application of our algorithm we test
the reliability of our code by checking a percolation prope
of the Potts model on a square lattice which is suppose
be exact in the range 0,q,4, namely, that the mean fre
quency of active bondŝa l& at criticality @corresponding to
v5Aq in Eq. ~1!# should coincide, in the thermodynam
limit, with the random percolation value, i.e.,^a l&5 1

2 , irre-
spective of the value ofq @2#. We simulated critical Potts
models on a 1283128 square lattice withq ranging from 1.5
to 3.5. In all the cases the mean number of bonds was c
patible with the exact result. The finite size effects of th

TABLE I. The decorrelation timet of the algorithm described
here for the critical 2D Ising model for different linear lattice siz
L is compared with the same quantity from the SW algorithmtSW

and with the upper boundt0. The definitions oft and thetSW data
are taken from Ref.@16#.

L t tSW to

8 2.65~3! 5.17696~32! 3.3869
16 3.16~5! 6.5165~12! 4.5158
32 3.69~6! 8.0610~18! 5.6448
64 4.3~1! 9.794~4! 6.7737
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observable, which are visible on smaller lattices, allow us
evaluate the critical thermal exponentn as a function ofq.
This could be used to check a conjectural formula sugge
by the 2D conformal field theory@4#. We plan to study this
problem in a future publication.

This algorithm allows us to deal with an important iss
of the three-dimensional Potts model, namely, the estimat
the tricritical pointqc in the range 2,qc,3, where the ther-
mal transition changes from second order forq<qc to first
order forq.qc . Many different techniques have been us
to locate this point@5–9#. We applied a method very simila
to that described by Lee and Kosterlitz@8# by computing the
double histogramN(b,c) of bond and cluster number distr
bution in a cubic lattice of volumeL3 at a givenb andq and
then extrapolating the data to nearby values. Using Eq.~1!
we can write

N~b,c;b,q,L !5NV~b,c!
vbqc

Z
, ~8!

where N is the number of MC sweeps. We can trade t
number of bondsb for the energy per siteE using the relation
E52b(v11)/v L3. Near a first-order transition the histo
gram P(E)5(cN(b,c)/N has a characteristic double pea
structure corresponding to the ordered and the disorde
phases. A suitable reweighting through Eq.~8! of the energy
distribution yields the valuebc(L,q) where the two peaks a
E1(b,L) andE2(b,L) are of equal height. A typical plot o
the quantityA(E,q;bc ,L)52(cln@N(b,c)/N# is shown in
Fig. 1. A useful estimator of the interface free energy b
tween the ordered and the disordered phases@21# is given by

DF~q,L !5A~Em ,q;bc ,L !2A~E1 ,q;bc ,L !, ~9!

whereEm is the local maximum that separates the two d
at E1 andE2 ~see Fig. 1!. At a first-order transitionDF(L)
increases monotonically withL and is expected to vanish a
the tricritical point. By extrapolating the numerical data
both b andq one may locate this point. The region of rel
able extrapolation@11# is O(1/L3) for both b and q. This

FIG. 1. Plot ofA(E,L) resulting from a simulation of a 3D Pott
model atq52.75 with 3.33107 Monte Carlo Steps~MCS! for L
514 ~full circles! compared with the extrapolation at the sam
value of q of an actual SW simulation of 4.13107 MCS at q53
~crosses!. The latter data are shifted to the right for clarity.
5-3
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does not cause a problem forb, since it can be adjuste
continuously, butq cannot in standard simulations, being b
necessity an integer value. Actually Lee and Kosterlitz p
formed their simulations atq53 and found that the extrapo
lated data become too noisy forudqu.0.3 @22#. In our case
we can directly evaluate the range of reliable extrapolatio
Indeed, the main advantage of the algorithm described in
paper is that now alsoq can be adjusted continuously.

Our simulations were performed on three different lattic
as listed in Table II. The statistics is good since in all t
cases the mean flipping time between coexisting states
no larger than 30 MC steps. The errors were calculated
gathering the histogramN(b,c) every 106 MC steps and then
performing a standard analysis.

In all the cases the energy histogram showed a dou
peak structure, providing a direct evidence of the first-or
nature of the transition for these values ofq ~see Fig. 2!. This
yields the upper boundqc,2.7. In shorter simulations atq
52.6 we found no trace of a double peak structure. T
suggestsqc.2.6. Using the reweighting method we es
mated the valuesbc(L,q) where the two peaks are of equ
height for eachL and for few values ofq nearq52.7 and the
corresponding values ofDF. The results are reported i
Fig. 3.

A further reweighting up toq53 allowed us to compare
the extrapolated data with those coming from a similar
trapolation of standard SW simulations atq53. This com-
parison showed that the range of reliable extrapolation
udqu,0.25. It has to be noted that we could not use for t
comparison the high precision data of Ref.@25#, because the
energy distribution in terms of spin variables used there d
not coincide with that expressed in terms of bond variab

TABLE II. The simulations were performed on cubic lattices
sideL at the values ofq andb listed below. MCS is the number o
Monte Carlo steps considered.

L q b MCS

12 2.70 0.52270 3.03107

13 2.70 0.52270 3.03107

14 2.75 0.52721 3.33107

FIG. 2. Energy histogram atbc(L,q) obtained by a simulation
at q52.7 andL513.
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used by necessity in the present approach. In particular,
bc(L,q)’s are shifted and ourDF(q,L) is always smaller.

Simple finite size scaling considerations suggest@8# that
near qc the interface free energy has the simple fo
DF(q,L);(q2qc)

2La which fits our data very well~see
Fig. 3!. To within our numerical accuracya54.860.1 and
qc52.62060.005. This agrees with the valueqc52.55
60.12 obtained in the largeq expansion of the latent hea
@6#. Lee and Kosterlitz@8# extrapolatingq53 data found a
smaller value,qc52.4560.10. The difference could be du
to the fact that extrapolations withudqu.0.25 give an over-
estimate ofDF ~this is already visible in Fig. 1!. Other ap-
proximate methods give even smaller values: real sp
renormalization group methods@5# yield qc;2.2 while an
Ornstein-Zernike approximation@9# givesqc;2.15.

V. CONCLUSIONS

This work provides a MC algorithm to simulate the fe
romagneticq-state Potts model which has two very unusu
features: it works for any realq.0 and does not suffer an
critical slowing down. The former property is an obviou
consequence of the fact that it is based on the Fortu
Kasteleyn random cluster representation, whereq acts as a
continuous parameter. The latter is more tricky and is due
the implementation of the algorithm with a random seque
of disordering moves, randomly distributed over the latti
There is no reason to believe that this disordering mechan
is specific to the Potts model and it would be very interest
to try to implement it in other, more general MC methods.
drawback of the algorithm is that it is nonlocal, so the CP
time of a single sweep grows with the volumeV asVb with
1,b,2; thus it is not recommended for integerq, where the
SW algorithm works withb51. Actually, at a first-order
transition our algorithm performs better than the SW meth
but there the multicanonical MC algorithms are more su
able.

It is straightforward to extend the algorithm in order
take into account quenched bond randomness, provided
all the couplings are ferromagnetic. On the contrary, gen
alizing to systems with frustrations seems a rather diffic

FIG. 3. Plot ofDF(q,L) nearq52.7.
5-4
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task, because it is not obvious how to define in this case
FK clusters for nonintegerq @14#.

We used such an algorithm to study the region 2,q,3
of a three-dimensional Potts model in order to estimate
critical value qc for which the thermal transition change
from second to first order. We obtain a rather precise estim
compared to other methods,@5–9#, the reason being that a
the other methods are based on extrapolations from int
l.

nt

.

01611
e

e

te

er

values ofq, while the algorithm described here simulates t
system at nearby values ofqc .
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